

Cornell University

Cornell MineSweeper

Vehicle Design Report

Steven Liu, Gil Lee, Katie Lee Meusling, Hamzah Sikander,

Clauda Ephrem, Platon Dickey, Kevin Ullman, Jeff Slosberg, Greg Meese

Faculty Advisor Statement

I certify that the engineering design of the robot Nero, described in this report has been significant and equivalent to

what might be awarded credit in a senior design course.

E.G.

Professor Ephrahim Garcia

Department of Mechanical and Aerospace Engineering, Cornell University

1

Table of Contents

1 Introduction 2

2 Design Process 2

 2.1 Design Objective & Requirements Development 3

3 Hardware 4

 3.1 Innovations 5

 3.2 Software and Hardware Processing 5

 3.3 Chassis 5

 3.4 Drive Train and Controls 6

 3.4.1 Overview 6

 3.4.2 Motor and Gearing Selection 6

 3.4.3 Results and Testing 7

 3.5 Power and Quality Control 8

 3.6 Electronics Protection and Safety 8

 3.6.1 Electronics Protection 8

 3.6.2 Wireless E-stop 9

4 Software 9

 4.1 General Framework 9

 4.1.1 Platform 9

 4.1.2 Structure 10

 4.1.3 Modularity of Code and Hardware 10

 4.2 Software Innovation 10

 4.3 Data Acquisition and Preprocessing 11

 4.3.1 Camera Processor 11

 4.3.2 Lane Following 12

 4.3.3 LIDAR Processing 12

 4.4 Artificial Intelligence 13

 4.4.1 Navigation Algorithm 13

 4.4.2 Autonomous Strategy 14

 4.4.3 Speed Control 15

5 Conclusion 15

2

1 Introduction

 Cornell Minesweeper (CMS) project

was founded in 2006 to develop an

autonomous vehicle that can accurately detect

land mines and facilitate their clearance. To

validate the design of the autonomous platform

on which the mine detection sensors will be

mounted, we present Nero, Cornell

University’s first entry at the International

Ground Vehicle Competition (IGVC).

 Cornell Minesweeper follows a

revolutionary student team structure in that it is

completely flat, featuring no sub team leaders

for each division. This leads to greater

responsibility and participation from all team

members, regardless of experience. The team

consists of 32 undergraduate and 3 graduate

students, split into three main divisions during

Phase I: production, finance and marketing, and

the support division. As production of Nero

wraps up, the team transitions to Phase II,

breaking up into Competition Staff, Next Gen

Division and the Support Staff.

 Nero is IP65 rated, lightweight and

modular in design and features a zero-point turn

capability. It was designed and built entirely in-house

by Cornell engineering undergraduates.

2 Design Process

 The philosophy of the applied Systems Engineering (SE) process is “Design for Quality, Reliability and

Manufacturing,” each of which are capabilities. Quality is internally measured by meeting the requirements,

reliability by having no hardware failures, and manufacturing by reduced manufacturing time and labor intensity.

Each of these resulted in defining modularity, establishing a highly Commercial Off-the-Shelf (COTS) and lean

engineering approach in systems design, and applying very simple reliability engineering techniques. The project is

divided into two phases: the platform delivery (Phase I) and the software delivery (Phase II). Phase II for hardware

manufacturing can be thought of as a subset of Phase I.

Figure 1: Phase I Organizational Chart

Figure 2: Phase II Organizational Chart

3

Figure 3: Phase I Waterfall Model Applied with Control Documents. Refer to Phase I Organization

Each phase possesses a process model, a timeline or calendar, control documents and an associated organization.

Control is exerted by following the calendar, monitoring the information system weekly, project reporting, and

applying the control documents as constraints.

 Top level requirements were defined by Software

Engineering (SWE) and derived requirements were

developed by each of the subgroups (which included the

project staff i.e. support). Once we reached hardware testing

& unplanned events stage, we redefined the Interface

Control Document (ICD), and as new requirements were

developed, they were implemented in the Verification

Cross-Reference Matrix (VCRM). A testing method (as the

VCRM implies) was assigned and applied for each of the

requirements based on the SE philosophy of “testing tests

the requirements.”

2.1 Design Objective & Requirements Development

 Concept Selection and Requirements Development was the primary step in our process, and was given

extensive attention to develop effective design objectives:

1. Turnover Cycle of 1 year 8. Weigh Less than 60 kg

2. Modular in design 9. Battery Life of at least an hour

3. Comply with IGVC qualification requirements 10. System IP65 Rated

4. Support a 20 lb payload 11. Maximize Hardware Reliability via COTS, Risk

 Assessment, and reduced parts.

5. Apply COTS approach to software design 12. Compile consistent documentation

6. Zero point turn capability 13. Design Hardware for Software requirements

7. Traverse 15% incline from static position. 14. Design Software Framework for continued improvement

 & changing requirements

Figure 4: Phase II Sprint/Agile Engineering for

Unplanned Testing & Software Engineering

Requirements &
Concept
Development

• Total Time ~3 Weeks.

• Process Training &
Kick off Meeting.

• Team Dynamics
Training & Team
Buidling exericse.

• Requirements list &
"How to write
Requirements".

• Concept design with
readiness level.

• Preliminary concept
selection with entire
team.

Design of
Hardware and
Software

• Total Time ~ 5 Weeks.

• Design Documents -
Entitry-Relationship
Diagram, Lifecycle
Diagram, Functional
Flow Diagrams, Parts
List, CAD files.

• Analysis Documents -
Power Budget, Stress
Simulations, Finite
Element Analysis (FEA)
etc.

• Failure Modes and
Effects Analysis
(FMEA).

Planning &
Manufacturing

• Total Time ~ 8 Weeks

• Gantt Chart

• Budget.

• Staff Trainings

• Manufacturing

Phase II: Start
Hardware Testing
& Unplanned
Events

• Total Time ~ 6 Weeks.

• SPRINT ENGINEERING
/ Agile Development
(Refer to Sprint
Engineering Figure
below).

• Interface Control
Document (ICD)

• New Master Calendar

• Verification Cross
Reference Matrix
(VCRM) for Testing.

Handover &
Maintanence

• Total Time ~5 Weeks.

• Documentation
released & Custom
Designed by Groups.

• Refer to Information
System.

• Team Re-organized
and ready for Phase II.

4

 These design objectives were established with our entire team staff after reviewing the IGVC rulebook,

past videos and reports, and the recommendations of professors. Objectives 1,2,5 and 11 were objectives established

by the systems engineer to ensure project success. Objectives 3,4,6,7 and 9 were required by the software engineers

(customer) to ensure mission success and software design competency. Objectives 8, 10, 12, 13 and 14 were

established by the systems engineer and Professors to ensure hardware design competency, which is demonstrated.

Requirements were developed by each subgroup according to the following categories for their respective

subsystems and were frozen during design freeze prior to production:

1. Overall System Requirements 6. Interface Requirements

2. Functional Requirements 7. Verification Requirements

3. Performance Requirements 8. Environmental Requirements

4. Design Requirements 9. Non-behavioral Requirements

5. Derived Requirements 10. Component Requirements

 Additional requirements after the design freeze were constrained by IGVC compliance requirements,

software requirements and subsystem hardware interfacing requirements. Since requirements development is the

backbone of SE thinking, strict “shall” grammar was enforced. An example of an interfacing requirement: “Power

shall supply 24 V at 200 W each in 2 black and 2 red 20 AWG Teflon coated wires over an Amphenol D-Sub

circular connector with 4 pins”. This would be supplemented by other requirements. For a requirement to be valid, it

must be unambiguous, isolated, concise, measurable, unique and consistent with respect to all other requirements.

3 Hardware

 As highlighted before by the organizational chart, the production division of Minesweeper was broken up

into 5 main groups: Chassis, Drive Train and Controls, Power and Quality Control, Electronics Protection and

Safety, and Software and Hardware Processing. The goal of these subgroups was to be cross-disciplinary, drawing

expertise from different fields to create the best design. While the different subsystems were developed

independently, communication and integration

between sub-teams was a top priority, ensuring an

effective overall design.

 Beyond the fundamental requirements, the

design emphasizes endurance, safety and reliability,

organization, and modularity that separates Nero

from other robots.

 Throughout the design process, extensive

use of the SolidWorks™ Computer Aided Drafting

and Design tool was utilized in product visualization

and troubleshooting. Every component from design

to fabrication was drafted: aiding in fabrication,

assembly and redesign every step of the way.

Table 1: Summary of Costs

Item Value Cost to Team

Microbotics MIDG-II INS $7060.00 $0.00

Sick LMS291 LIDAR $5137.00 $5137.00

MC-433 Camera $350.00 $350.00

Drive Train $1109.48 $1109.48

Chassis $818.66 $818.66

Mini ITX $529.93 $529.93

Wireless E-Stop $85.00 $85.00

Mechanical E-Stop $50.00 $50.00

Amphenol Connectors $962.00 $0.00

Waterproof Connectors $75.00 $75.00

Waterproof Cases $140.00 $140.00

Battery $869.95 $869.95

Power System Hardware $560.00 $560.00

Total: $17,747.02 $9,725.02

5

3.1 Innovations

 While simplicity was an important design

consideration, Nero’s hardware boasts an

impressive array of innovations that will set Nero

apart in design and quality. Modularity of

individual components is integrated throughout the

entire system for versatility and increased

functionality. The use of large bike wheels will

enable Nero to traverse more challenging

landscapes while tightly secured components down

to the very last circuit board will decrease natural

vibrations. Within the circuit, innovations in the

circuit design provide an efficient and organized

power distribution network which also allows E-

Stop functionality to cut power only to the Drive

Train components. The battery circuit also features a

“hot-swap” capability to allow Nero to switch

batteries without powering down. For maintenance purposes, Nero has a rail-system so that the electronics can slide

out and be examined. Lastly, heat management within the electronics was handled with a hybrid system: IP54 fans

circulating cool air within electronics case and a large heat sink, which radiates to the atmosphere through a “Swiss-

cheese” pattern of holes, to cool the battery. These innovations mentioned here will be covered more in depth later

in the report with respect to each section.

3.2 Software and Hardware Processing

 The following sensors are selected

and utilized in data processing: computer,

LIDAR, camera, INS, and motor encoder.

The function of each sensor is described in

Table 2, and the location of each sensor is

depicted in Figure 5.

3.3 Chassis

 The general structure of Nero is

broken up into a main chassis and a modular

“pod,” which serves as a balance point for the

two wheels. The main chassis houses the

electronics contained in two IP65 cases, the two drive train blocks, and the sensors including the camera mount.

Table 2: Sensors Functionality

Part Description

Computer

[Kontron 986LCD-

M/mITX]

Processes the image, combines all

available data to compute, and stores

old data.

LIDAR

[Sick LMS291]

Determines the distance from the

nearest obstacles in a 180 degree range

at different angles.

Camera

[MC-F433 Firewire]

Takes pictures and performs basic

preprocessing such as white balancing

and scaling to detect lane lines, edges,

and possibly other obstacles.

INS

[Microbotics MIDG-II]

Obtains the current location of the

robot in latitudinal and longitudinal

coordinates and, if possible, calculates

the confidence and height measures.

Motor Encoder Calculates the current speed in

revolutions per second.

Figure 5: Overview of Nero and Sensors

6

 Keeping in mind the principle of modularity, the payload is kept in the back away from the rest of the robot

with the idea that it can easily be replaced in the future. This would ultimately lead to the ability to easily install a

mine detection package while keeping the rest of the autonomous platform intact. The back pod is supported by two

free-swiveling castor wheels, providing a relatively frictionless balance point for the two drive wheels.

3.4 Drive Train and Controls

3.4.1 Overview

 The drive system consists of two

identical units, referred to as “drive blocks.”

Each one turns a 24-inch bicycle wheel. The

large diameter of the wheel gives us smooth

performance over rough terrain, yet is

lightweight. The drive blocks were designed to

be simple, robust, and easily swappable. In the

event of a drive train failure, a replacement block

can be installed with simple tools in only a few minutes. The

wheels can also be quickly interchanged. Currently there is

only one set, but in the future, different wheels may be

adapted for different conditions, and it will be easy to install

the right one for the scenario.

 Each block has a 220 W motor and gearbox

combination. A pair of bearings supports the shaft of the

bicycle wheel. The shafts of the motor and wheel are

connected with sprockets and heavy chain. A tensioner unit

keeps the chain tight, and provides some shock absorption to

protect the motor from abrupt loading. The motor driver and

USB interface are housed in a waterproof case; there are

connection points for power and for signal from the main computer.

3.4.2 Motor & Gearing Selection

 In order to find an appropriate motor, a worst-case design scenario from the competition was used. The

most demanding situation for the motors is moving the vehicle up the ramp. Assuming that the vehicle starts with

zero velocity at the bottom of the ramp, it must accelerate to some speed while climbing. The top speed and the rate

of acceleration to that speed were taken as adjustable parameters, and required some adjustment to compromise

between acceptable performance and reasonable power consumption. Fixed parameters included the projected

weight of the robot, the distribution of weight, the angle of the ramp, and the friction from dragging the casters.

Table 3: Mechanical Properties of Nero

Property Specification

Material 6061 Aluminum and 1018 Steel

Length 42.125 in

Width 39.50 in

Height 23.50 in (without camera mount)

Weight 45 kg

Ground Clearance 5 in

Payload Capacity 20 kg

Wheel Diameter 24 in

Drive Gear Reduction 75:1

Maximum Speed 4.86 mph

Speed on 15 ramp 2.5 mph

Torque required 43 N-m

Sprocket Reduction 10:17

Figure 6: CAD Model of a Drive Block

7

Basic physics was then used to find the required torque and speed. A simplified version of the parameters and results

of this calculation are shown in Table 4. Rather than being treated as a static calculation, this was used as a tool; the

inputs and assumptions were changed to meet requirements of the various subgroups before settling on a final result.

 We selected a brushless 24V tri-phase motor from Anaheim Automation. In addition to its specifications, it

was easy for us to implement this product, because the company sells a matching motor controller and 75:1 gearbox.

The controller provided closed-loop feedback control and a variety of safety features. This greatly simplified the

task of interfacing with the motor. The only modification was to add thermisters to monitor the temperature of the

motor and driver, to ensure that neither would overheat.

 To select an appropriate gear reduction for the motor, the factor of safety was calculated for a range of

values. The motor performance was modeled using a linear fit between the no-load speed and the stall torque. The

factor of safety was found using both the projected speed and torque. Graphing the minimum from each set yields a

clear peak, as the left hand side is dominated by the speed requirement and the right hand side the torque

requirement. It is important to note that the 75:1 gearbox and motor combination actually has a lower speed than is

necessary for our application. The gear reduction in this case refers to increasing the speed by decreasing the torque.

From the graph, we picked a gear reduction of 10:17. This gives a factor of safety of 2.16 in regards to torque, and

gives a theoretical maximum speed on flat ground of 4.86 mph, just under the speed limit of the competition.

3.4.3 Results and Testing

 Testing the drive blocks on the vehicle was successful. The platform achieves speeds of approximately 5

mph on flat ground, as predicted. Although we were unable to find a ramp of the exact angle specified, Nero is

capable of climbing grassy slopes of a much steeper angle than that required for the competition. The motor

controller also performs well. Performing a zero-point turn gives only negligible drift of the robot center, showing

that the motor controllers responsible for setting the speeds performs as expected.

1.00

1.20

1.40

1.60

1.80

2.00

2.20

2.40

2.60

2.80

3.00

1.00 3.00 5.00

Fa
ct

o
r

o
f

Sa
fe

ty

Gear Reduction

Series3
Series4
Series5

Table 4: Performance Parameters and Results

Figure 7: Factor of Safety for Various Reductions

8

3.5 Power and Quality Control

 To provide for a total power consumption of 310W at a peak of 30A

with a factor of safety of 2 (Table 5), a high power supply system that could

handle high power and amperage was required. As a result, with a minimum

run-cycle of 30 minutes and up to 10 cycles expected per day, 51.8V, 518Wh

polymer Li-Ion rechargeable batteries were selected for their high power

source and peak current tolerance of 40 Amps. Nominal 48V systems are

common in professional applications in the industry and are the military-

specification norm.

 The innovative battery circuit was built with a

hot-swap capability (Figure 8). In other words, the

batteries can be swapped without cutting off power to

the robot, so the robot can operate continuously

without being restricted by the battery capacity. Also,

each battery is equipped with a LED gauge that

displays the charge status of the battery to complement

the hot-swap capability. In addition, the battery circuit

allows for using external power through AC supplies

for testing purposes and to minimize direct use of

battery power. An innovative solution for heat

management was the installation of “Swiss-cheese”

shaped metal plating at the bottom of the battery case

that draws heat away from the battery. With a fully charged battery, Nero was able to safely operate for 5+ hours.

With a 3A battery charger, a quick recharge of the battery can be achieved in approximately 4 hours.

t =
𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝐶𝑎𝑟𝑔𝑒𝑟 𝑜𝑢𝑡𝑝𝑢𝑡 𝑐𝑢𝑟𝑟𝑒𝑛𝑡
 𝐶𝑎𝑟𝑔𝑖𝑛𝑔 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =

10 𝐴

3 𝐴
 1.2 = 4 𝑟𝑠

3.6 Electronics Protection and Safety

 The primary design concern was to satisfy the following

requirements: ensuring physical and electrical protection of the

electronics and implementing a hardware-based wireless

emergency-stop solution with an effective range of at least 50

feet that brings the robot to a quick and complete stop.

3.6.1 Electronics Protection

 The electronics require proper protection to guarantee

maximum performance and prevent any potential damage.

Table 5: Electronics Power

Consumption Part Power (W)

Camera 1

Computer 40

INS 1

LIDAR 20

Motors (x2) 246

Wireless E-stop 1

Total 309

Figure 9: CAD Model of Electronics Case

Switch 1

Switch 2
Diode 2

Diode 1

48V, 11A

48V, 11AFuse

Power

Output

Figure 8: Hot-Swap Circuit

9

Physically, the main electronics are securely mounted inside the electronics case and the battery case, both of which

are IP54 rated waterproof and dustproof. Further, all connectors utilized for the connections through the electronics

case and the battery case are IP65 rated waterproof. Electrically, heat management was the main design concern.

The heat sink on the computer is responsible for managing heat dissipation of the computer, while the IP54 rated

fans circulate air from one end of the electronics case to the other. Also, in the electronics case, direct contact

between the floor of the case and the electronics is avoided. This is accomplished by raising the acrylic boards on

which the electronic components are mounted to prevent concentrated heat flow. The innovative two-level stacking

of electronic components in the electronics case is derived from the same principle as well as efficiently using the

space within the electronics case. To prevent the effects of unexpected surge current, a circuit breaker is installed in

the battery case, as well as diodes that are configured to handle 20-50 A of current. Heat dissipation was not a

problem during the entirety of Nero’s testing phase.

 In order to facilitate the maintenance of the electronics case, simple rail system was incorporated onto the

electronic case so that it can be slid out and opened for examination. Throughout the system, United States

Military Standard (mil-spec) wires are used to ensure safety and reliability. Efficient wire management was given

particular attention as it enhanced organization and simplicity of the wiring scheme, avoided potential voltage drops

due to long wire connections, and allowed for convenient maintenance. Also, the use of Amphenol connectors,

Eurostrip, and Molex connectors permit not only safe and secure connections, but also modularity, enabling a

convenient and easy replacement of components and transportation. Eurostrip, in particular, enables parallel

distribution of power so that the electronic components can be connected without affecting the rest of the system.

3.6.2 Wireless E-stop

 For the wireless e-stop solution, we purchased a COTS RF receiver with a guaranteed reception range of

100 feet and a RF transmitter with a set/reset toggle functionality. The purchased module was incorporated in series

with the mechanical e-stop circuit to cut off power to the motors exclusively, bringing Nero to quick and complete

stop while leaving other electronics functional. The set/reset capability and the guaranteed range of over 100 feet

with line of sight were tested and confirmed. At full speed, Nero completely stops within 3 seconds and 6 feet.

4 Software

4.1 General Framework

4.1.1 Platform

 Nero runs on an Ubuntu Linux platform. The primary consideration in the decision was that many of the

libraries utilized are only supported by Linux. In addition, Ubuntu is open source, well-documented, familiar to the

team, and has less overhead than Windows. Programs are written in C++ using the Eclipse Integrated Development

Environment (IDE). C++ runs faster than Java but still has the benefits of modularity associated with the object-

oriented design.

10

4.1.2 Structure

 The core of the data processing is the Data

Processor class whose main objective is to delegate work

to the other processors, namely the LIDAR, camera, INS,

and motors and combine the data received from these

processors. Processed data is passed to the AI, which

calculates routes and passes commands to the Motor

Encoder which communicates with the motors to adjust

Nero’s speed and direction.

4.1.3 Modularity of Code and Hardware

 Our code is designed such that the components

are modular and they can be easily swapped or replaced.

One example of this modularity is that the code related to

each Input/Output (I/O) device is limited to a single class

or package. For example, if the camera were replaced

with 2 new cameras, the main structure of the code could

be left unchanged as long as the new class that replaces

the current camera processor used the correct interface.

Thus, the sensors are quite modular and easily swapped out.

Similarly, we currently have two AI strategies, Navigation and Autonomous; however, we are in no way

limited to these strategies. Again we have an interface for an AI strategy, and any number of strategies can be

interchanged with minimal effort.

4.2 Software Innovation

 A key innovation in the software design for Nero is

the development of the Circle Algorithm (CA), used for

obstacle avoidance. The algorithm is also the basis for path

planning in the navigation challenge. See Figure 11 for an

illustration. During the Navigation Challenge, a global map

is maintained using results from the CA. Each time a circle is

determined to be unclear, the values of grid squares within

the circle are increased. Conversely, whenever the algorithm

finds a clear circle, the values of the grid squares are

decreased.

Figure 10: Software Flow Diagram

1

Nero

Obstacle

s

2 3

Nero

4

5

Obstacle

s

Figure 11: Circle Algorithm

11

Circle Algorithm:

circle = circle directly in front of robot, with size MAXSIZE

circle_count = 1, turn_count = 0, turn_direction = left

while (circle is not clear && circle size > MINSIZE) do

 /* the circle is unclear so mark the map accordingly */

 update map information

 if (turn_count = num_turns_by_circle_count (circle_count)) then

 /* num_turns_by_circle count is a function that determines how many times the circle should be

 shifted before becoming smaller. The circle sweeps across a greater angle as it decreases in size */

 circle = circle_size * SCALING_FACTOR

 circle_count++

 else

 /* circle is swept from 0 degrees (directly in front of the robot) left or right */

 circle = rotate_circle (circle, turn_multiplier * TURN_ANGLE, turn_direction)

 /* turn multiplier increases the angle which the circle is moved at each step */

 turn_direction = turn_direction == left ? right : left

 turn_count++

 endif

endwhile

if (circle is clear)

move

update map information

else

 recalculate optimal path

endif

4.3 Data Acquisition and Preprocessing

4.3.1 Camera Processor

 The camera’s main function is line detection, which enables Nero to detect lanes and potholes. The open

source dc1394 library interfaces with the camera, allowing for individual frame capture. Then, the opencv library is

used for various corrections and detections. The camera, chosen for its wide range of vision among other factors,

has a resulting mild fisheye distortion. To correct for this, the corners were detected on a series of pictures of

chessboards and then the image was mapped to a non-distorted space using the opencv library.

Canny edge detection, implemented by opencv, is first used to identify edge points in the images. These

detected edges serve as a starting point for a Hough transform. The Hough transform groups edge points together

a) Canny edge detection b) Hough transform

Figure 12: Stages in Lane Detection

12

and estimates the most likely parameters for a line through the points. See Figure 12. When the processor has

determined that a line exists, it stores the direction of the line in a vector and passes it to the AI. For pothole

detection, Nero again relies on a Hough transform to fit a circle. The function Intersect Circle, used in the Circle

Algorithm to determine whether a given circle is clear, determines whether or not there is a line or pothole in the

proposed circle.

4.3.2 Lane Following

 During the Autonomous Challenge, the first step in the algorithm is to check for any lane lines. If a lane

line has been detected by the camera processor, it returns a vector determining the direction of the line. This

direction is set as the next direction for Nero to travel. For dashed lines, the camera will still return a vector in the

direction of the line and this will become the next direction for the robot. In between line segments, Nero will

maintain the same direction, until the next line segment is detected and another command is passed to travel parallel

to the line.

4.3.3 LIDAR Processing

 The LIDAR is responsible for detecting all obstacles except for lines and potholes. The SICK toolbox

provides a collection of libraries to interface with the LIDAR. The function Intersect Circle works analogously to

the function of the same name in the camera processor. The goal is to determine whether a given circle from the CA

is free of obstacles or not. Intersect Circle projects the circle currently considered by the algorithm onto the ray

measurements given by the LIDAR. To speed up processing, only the data from the rays that intersect the proposed

circle are analyzed. An intersection occurs when the ray ends before or inside the circle, indicating that the circle is

not clear. The number of such intersections is counted, and when this value passes a threshold constant to be

determined by testing the circle is determined to be not clear. The LIDAR is capable of detecting obstacles at a

range of up to 30m, but the CA only requires detection of obstacles at a maximum range of the diameter of the

largest circle, or 3m.

During the navigation challenge, the LIDAR

processor also preprocesses data as it is received to determine

which side of the track has fewer or farther obstacles. See

Figure 13. If at a certain angle the LIDAR does not detect any

obstacle or only obstacles beyond the track borders (like

obstacle 1) or obstacles beyond the maximum distance

considered (like obstacle 2), the data point for that angle has a

value of 1. If the Lidar detects an obstacle at a point within

the track boundaries and before the maximum distance to be

considered (like obstacle 3) the data point for that angle will

have a value of
𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

max 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
 . The vertical distance is

depicted by the orange line in Figure 13. To determine which

Max

Distance

2

1

3

Nero

Figure 13: LIDAR Preprocessing

13

side of the track is better, the LIDAR processor sums all the values of the data points to the left and all the values of

the data points to the right. The maximum of the two values indicates the side that contains the least or farthest

obstacles and therefore is the better side. Then the direction of travel can be altered accordingly.

4.4 Artificial Intelligence

4.4.1 Navigation Algorithm

 The algorithm for the Navigation Challenge employs an A* graph search on a global map. The map

consists of a grid with each square storing the obstacle weight value. This weight represents the likelihood of an

obstacle existing within that square, obtained through iterations of the Circle Algorithm. Each time a circle is

determined to be unclear, the weights of all of the grid squares within that circle are increased. Conversely,

whenever a clear circle is found, the values within the circle are decreased. Using the map generated by this

process, the A* algorithm constructs a best path to the closest waypoint that has not yet been reached. Each grid

point in the map is a node that A* considers. Edge weights between each pair of nodes are a function of the obstacle

weight value for the destination node and the map distance between the nodes, which is either 1 or 2 since the grid

is a square grid. The A* algorithm will compute a new route to the closest waypoint each time that a circle is found

to have an obstacle, since the map will be updated. Figure 14 below shows the Navigation Algorithm.

Move Requested

Remove waypoint

from set of waypoints

to be visited

Add starting point as

waypoint

Circle Algorithm

in the direction

of the move

Move Returned

Update global

map

A* Search

No Yes

Yes
Yes

Set Empty?

Moves in a

previously

calculated best

route?

No

At a

waypoint?

Yes

Collision?

No

Continue Circle

Algorithm until

clear circle is

found

Update global

map

No

 The GPS part of the INS is used to determine the current location of Nero. Both this position and

orientation, obtained from the inertial measurement unit (imu), are required to update the global map as the CA finds

clear and unclear circles. See Figure 15 below for an illustration of the path Nero follows during the Navigation

challenge.

Figure 14: Navigation Algorithm

14

4.4.2 Autonomous Strategy

 The general strategy for the autonomous algorithm is to continue to move forward if no lanes are detected,

keep track of orientation, and maintain a global orientation that will be updated regularly to ensure that Nero’s

orientation coincides with the global orientation. The AI will keep a stack of previous movements and speeds. Data

from the INS processor, only obtained from the IMU, is used to keep track of orientation, allowing Nero’s past

movements to be defined as vectors. The global direction is determined by adding the vectors followed during the

last x moves, x being a parameter to be adjusted during further testing. The algorithm is detailed in Figure 16. The

Modified Direction is determined to be validated or not according the Figure 17.

Acquire data from

Camera Processor

Set preliminary

direction vector parallel

to detected lane line

Modify direction

Acquire data from

LIDAR Processor

Check Modified

Direction against

Global Direction

Command MotorsYesValidated? Yes

Change sign of x-

component of

Modified Direction

No 1
st
 time

Use preliminary

direction

No 2
nd

 time

Circle

Algorithm finds

a clear circle?

Revert last movement

and look for another

direction of travel

No

 Figure 16: Autonomous Algorithm

Actual course

Nero’s map at start Nero’s map at 1st waypoint Nero’s map at 2nd waypoint Nero’s map at finish

Figure 15: Path through Navigation Challenge

15

Figure 17: Validation of Modified Direction

 This algorithm will allow for navigation through

switchbacks because the algorithm validates the modified

direction with the global direction to prevent backtracking.

Center islands will be circumvented by the CA as in Figure

18. If there is an obstacle directly in front of Nero, the

algorithm then considers a circle rotated to the left or right.

Thus Nero has the freedom to travel slightly to the left or

right of the modified direction suggested by the LIDAR

processor.

4.4.3 Speed Control

 The more circles that the CA considers before a

direction is determined to be clear, the more obstacles are in

the area and so Nero should be more cautious. Thus the

Navigation algorithm only passes a command to the motors to go at full speed if the initial largest circle was clear.

Each time the circle size is reduced, the speed will be reduced.

5 Conclusion

 Cornell Minesweeper is proud to present Nero as the result of the two semesters of dedicated effort. The

use of the SE process allowed for effective, requirements driven design and quick systems integration. Significant

innovations such as the modularity of the design, large wheels to traverse rough terrain, superior electronics

protection, and hot swap battery capabilities set Nero apart from other robots and are extremely relevant to Cornell

Minesweeper’s ultimate goal of developing a platform for landmine detection. Nero is a reliable and effective

autonomous platform that will perform well at IGVC. We look forward to testing Nero’s capabilities in competition

and continuing to improve upon our design in years to come.

obstacle

Nero

Circle unclear
Circle clear

 Figure 18: Avoiding Center Islands

